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TiC lattice dynamics from ab initio calculations
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Abstract. Ab initio calculations and a direct method have been applied to derive the phonon dispersion
curves and phonon density of states for the TiC crystal. The results are compared and found to be in a
good agreement with the experimental neutron scattering data. The force constants have been determined
from the Hellmann-Feynman forces induced by atomic displacements in a 2×2×2 supercell. The calculated
phonon density of states suggests that vibrations of Ti atoms form acoustic branches, whereas the motion
of C atoms is confined to optic branches. The elastic constants have been found using the deformation
method and compared with the results obtained from acoustic phonon slopes.

PACS. 63.20.-e Phonons in crystal lattices – 71.15.Nc Total energy and cohesive energy calculations

The transition-metal carbide compounds, of which TiC
is a representative, are of big scientific and technologi-
cal interest because of their striking mechanical proper-
ties, extreme hardness combined additionally with metal-
lic electrical and thermal conductivity. They have usually
a rock-salt crystal structure – like some ionic crystals –
while having properties typical for materials with covalent
bonding. It suggests that the bonding has some mixed na-
ture, which makes these materials very interesting as an
object of study.

Over a large range of fractional carbon content from
TiC to TiC0.5 [1] the TiC is stable in the NaCl structure,
with space group Fm3̄m. In practice, it is usually non-
stoichiometric and contains carbon vacancy defects. The
phonon dispersion curves of nearly stoichiometric TiC0.95

have been measured along main symmetry directions by
Pintschovius et al. [2] using the inelastic neutron scat-
tering technique. In the same paper, the influence of the
carbon content on the phonon dispersion curves has been
additionally checked by measuring a sample with lower
carbon concentration TiC0.89. The results showed that
the optic modes could differ by 3.5%, while the acous-
tic modes are less sensitive to carbon content. The elastic
constants derived from the measured acoustic dispersion
curves agree very well with those obtained by ultrasonic
measurements for TiC0.91 crystal [3].

The very interesting properties and simple structure of
TiC have induced several efforts to understand its proper-
ties using first-principle calculations [4–7]. The electronic
structure, bulk modulus, and elastic constants have been
found [8] by means of accurate first-principles total-energy
calculations using the full potential linear muffin-tin
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orbital method. The calculated values are generally in very
good agreement with experiment.

In this paper we intend to extend first-principle cal-
culations to describe the phonon dispersion curves and
phonon density of TiC. The method is based on the
total energy calculation and Hellmann–Feynman (HF)
forces. Dispersion relations are calculated by direct method
[9–13], in which the force constants of the dynamical ma-
trix are calculated from HF forces. Elastic constants and
bulk modulus have been estimated by straight evaluation
of energy derivatives with respect to deformation.

The energies and forces of the TiC crystal were calcu-
lated by the method of total energy minimization, using a
norm–conserving pseudopotentials as an approximation of
the atomic core–valence electron interaction [14,15]. For
an excellent review of ab initio total–energy calculations
see reference [16] and further references given there. For
the lattice dynamics calculations the 2 × 2 × 2 supercell
with periodic boundary conditions and 64 atoms has been
used. For optimizing the structure and for direct calcula-
tion of energy deformations a 1× 1× 1 supercell has been
utilized. The ab initio total energy calculations were done
with the CASTEP package [17] and standard pseudopo-
tentials provided within this package. These pseudopoten-
tials were constructed within LDA approximation. The
Ti pseudopotential treats 3p electrons as belonging to the
core. We have employed a non–local variant of those po-
tentials parametrized in the reciprocal space with 900 eV
and 600 eV cut–off energy for 1 × 1 × 1 and 2 × 2 × 2
supercells, respectively. Tests which had been made with
the cut-off energy of 600 eV applied to the 1 × 1 × 1
supercell, showed that in this case the cohesive energy
is only 0.2 eV higher, and the lattice constant is longer
by 0.0006 Å (0.01%), comparing to the 900 eV cut-off.
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Therefore, we have used a 600 eV cut-off energy for a
larger supercell calculation.

A generalized gradient approximation (GGA) has been
used for the exchange energy term of the valence states
of the Hamiltonian [18]. Although this procedure is not
quite consistent, there are indications [19] that LDA gen-
erated pseudopotentials used with GGA exchange term
in crystals are sufficiently accurate for energies and struc-
tures. The integration over the Brillouin zone has been
performed with weighted summation over wave vectors
generated by Monkhorst-Pack scheme [20] using 0.1 Å−1

and 0.06 Å−1 grid sizes which leads to 4 and 32 wave
vectors for 1 × 1 × 1 supercell and to 1 and 4 wave
vectors for 2 × 2 × 2 supercell, respectively. No signifi-
cant difference due to different number of wave vectors, 1
or 4, has been found in calculated phonon frequencies.
The results of the dispersion curve presented here are
generated from the 0.06 Å−1 data set with 4 wave vec-
tors.

Since TiC is a weakly metallic compound it could have
been appropriate to use a smearing of electron levels in
the Brillouin zone integration. This procedure is compu-
tationally more expensive. Thus we have performed a se-
ries of tests to compare lattice constants, bulk moduli
and phonons in Γ and X points obtained using Gaussian
smearing in the range from 4 to 0.1 eV and denser k-space
grids (4, 14, 32, 63 k-points) for one unit cell configura-
tion. The comparison of results shown in Table 1 indicate
that, for a sufficiently dense k-space grid, these quantities
are not very sensitive (specially the lattice constant and
bulk modulus) to the choice of method of Brillouin zone
integration. Thus we have decided to use the much sim-
pler and faster non-metallic approach in the final 2×2×2
supercell calculation. Note also that results obtained in
the metallic regime lead to larger divergency of phonon
frequencies from experimental data.

The minimization of the total energy with respect to
the lattice constant was performed within the CASTEP
minimizer module with 1 × 1 × 1 supercell and cross-
checked with 2 × 2 × 2 supercell. The equilibrium lattice
constant is a = 4.3448 Å which could be compared with
the experimental value a = 4.3269 Å [21]. Such a good
agreement may be coincidental, since inclusion of 3p elec-
trons in the valence band as well as gradient corrections
in core states tends to change the equilibrium lattice con-
stant [22–24].

The HF forces are defined as

Fi(n, ν) = −∂Etot/∂Ri(n, ν) (1)

where n, ν are the indices of the unit cell and atom within
the unit cell, respectively, and i is the Cartesian compo-
nent. At extremum all HF forces vanish. Non-zero HF
forces arise, when a single atom (m, µ) is displaced by
uj(m, µ) from its equilibrium position. The arising forces
are related with the cummulant force constants Φij by a
relation [11,12]

Fi(n, ν) = −
∑

m,µ,j

Φij(n, ν; m, µ)uj(m, µ). (2)
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Fig. 1. Absolute eigenvalues of the force constant matrices of
the TiC crystal as a function of interatomic distance.

Cummulant force constants appear as a result of periodic
boundary conditions imposed on the supercell. To calcu-
late HF forces an atomic configuration with a single dis-
placed atom must be minimized with respect to the elec-
tronic part only. Each of such runs provides 3n HF forces,
where n = 8 or 64 is the number of atoms in the 1× 1× 1
or 2×2×2 supercell, respectively. Two runs with displace-
ments along the z direction, one for Ti and a second for
C were performed. To minimize the systematic errors two
other runs with negative displacements were carried out.
The displacement amplitudes were set to 1% of the lattice
constant. This amplitude has been selected after a number
of careful tests in which displacements ware varied from
0.1% to 1.6%. It has been proven that the anharmonic
contributions are negligible up to 1% of displacement. At
smaller displacements, close to 0.1% the HF forces became
too small and the uncertainty of force constant evaluation
is not acceptable.

The data of 4 × 3n HF forces Fi(n, ν) and four dis-
placements uj(m, µ) form an overdetermined set of equa-
tions, equation (2), for the force constants. This system
was solved by the singular value decomposition algorithm
[11,25], which automatically provides the least-squares so-
lution. For 2× 2× 2 supercell the 768 components of the
HF forces lead to 33 non-zero independent parameters of
the force constants. Knowledge of these force constants
allows one to test the range of interaction potential. For
that, similarly to the procedure used in [13], we have cal-
culated the absolute values of the eigenvalues of the 3× 3
Φij(n, ν; m, µ) matrices and plotted them against a dis-
tance between atoms (n, ν) and (m, µ). The result for
2×2×2 supercell is depicted in Figure 1. It shows that the
interaction drops down at least by two orders of magni-
tude within the size of the supercell. The scatter of points
is too large to assign any rule which could govern the de-
caying of the force constants parameters with distance.
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Fig. 2. Phonon dispersion relations of TiC crystal calculated
from 2× 2× 2 supercell (full line). The same dispersion curves
divided by a factor 1.05 (dashed line). Experimental points
taken from reference [2].

From Figure 1 it is clear that the 1 × 1 × 1 supercell is
too small to be used for calculation of dispersion curves
since the considered force constants terminate at a radius
of a
√

3/2 = 0.866a.
The knowledge of the cummulant force constants al-

lows one to define an approximate dynamical matrix, in
which the summation over all atoms is confined to those
atoms which reside within the volume of the supercell.
The approximate dynamical matrix becomes equal to the
conventional one at discrete wave vectors kL given by the
equation exp(2πikL · L) = 1 [11], where L = (L1,L2,L3)
are the lattice vectors of the supercell. At the wave vec-
tors kL the phonon frequencies ω2(kL), calculated by di-
agonalization of the approximate dynamical matrix, are
the same as those calculated from the exact dynamical
matrix. For 2× 2× 2 supercell the exact wave vectors are
at Γ , X, L, W, and two other wave vector points, namely,
the midpoint between Γ and X along 〈1, 0, 0〉 and 〈1, 1, 1〉
directions. The advantage of the above described direct
method is that it does not impose any limit on the range
of interaction. When the supercell size is smaller than the
range of interaction, the direct method interpolates the
dispersion curves between the exact points.

The dispersion curves calculated on the basis of 2×2×2
supercell are shown in Figure 2. They correspond to tem-
perature T = 0. In the same Figure we compare the calcu-
lated dispersion curves with the experimental phonon fre-
quencies measured by the inelastic neutron scattering [2].
Different symbols of experimental points correspond to
different phonon polarizations established experimentally.

The experimental points are about ∆ω = 0.05ω lower
then the calculated values. One of the reasons for such
a situation could be that experimental values are mea-
sured at room temperature and anharmonic effects might
diminish the phonon frequencies. Another reason may be
related with a non-stoichiometric concentration of carbon
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Fig. 3. Phonon density spectrum g(ω) of the TiC crystal and
partial phonon density spectra gi,α(ω), where α = C or Ti and
i = x, y or z are the displacement directions. Experimental
points taken from reference [2].

in measured samples, which diminish the average phonon
frequencies as well. The effect of experimental phonon
points being at lower frequencies than the calculated ones
appears as well in other ab initio calculations [9,11].

The theory of lattice dynamics provides summation
rules which follow from translational and rotational in-
variances of the crystal. For TiC these invariances lead
to two equations, which can be used to set the values of
on-site force constant parameters. If these conditions are
satisfied the acoustic phonon branches at k = 0 would
point to ω = 0. Our dispersion curves, without imposed
translational-rotational invariances point at k = 0 to
ω = 0.31 THz. Since the invariance conditions should be
satisfied within the ab initio and direct methods, we have
not corrected our dispersion curves displayed in Figure 2
according to this effect.

By sampling the dynamical matrix for many wave vec-
tors, one can calculate the phonon density function g(ω),
and the partial phonon density functions gx,Ti(ω) and
gx,C(ω). The g(ω) describes the number of phonon fre-
quencies in an interval around ω, while gx,Ti and gx,C
specify the number of phonon frequencies in the interval
around ω but modified by the population of the x displace-
ment component of either Ti or C atom. The density of
states functions are shown in Figure 3. They are conven-
tionally normalized to

∫
g(ω)dω = 1 and

∫
gx,α(ω)dω =

1/6, where α = Ti or C. The curves show that mo-
tions within acoustic dispersion curves are almost entirely
due to Ti atoms. The sum of titanium density functions
(gx,Ti(ω) + gy,Ti(ω) + gz,Ti(ω)) fits to the total density
function g(ω) below 14 THz. Part of g(ω) above the gap
is mainly due to C atoms. Thus, TiC forms a rather spe-
cial crystal, in which the Ti atoms, as the heavier, form a
frame for elastic motion, and the C atoms vibrate within
the optical modes. We add, however, that the magnitude
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Table 1. Comparison of results from metallic and non-metallic approach

Quantity Exper. Non-metallic Metallic
# k 4 4 14 32 63
a0 4.327 4.345 4.35 4.342 4.345 4.342
B 2.4 2.42 2.41 3.527 2.418 2.427
ωΓ 16.3 16.5 19.0 11.8 15.6 15.6
ω1
X 8.5 8.5 10.2 5.1 9.2 8.5
ω2
X 10.8 10.0 11.1 10.3 10.7 10.7
ω3
X 16.5 17.0 18.2 12.8 15.7 15.3
ω4
X 18.5 17.8 19.3 16.7 18.1 17.7

of the force constants between Ti-C and between Ti-Ti
and C-C at the same distances remains of the same or-
der. Thus, TiC does not consist of two weakly bounded
subsystems. In Figure 3 the experimentally determined
phonon density of states [2,26] is also shown. The agree-
ment within the acoustic region is quite good. In the optic
part the experimental resolution of ≈ 2.5 THz and the
nonstoichiometry of carbon in the sample lead to broad-
ening of the optic band.

The elastic constants can be evaluated from the slopes
of acoustic branches of phonon dispersion curves. Here,
we have used the invariance conditions to set the acoustic
modes to ω = 0 at k = 0. For the fcc structure, the set of
seven equations for three unknown variables cij has to be
solved: ρv2

α,L = c11; ρv2
α,T = c44; ρv2

β,L = c11 +4c44 +2c12;

ρv2
β,T = c11 + c44 − c12; ρv2

γ,L = c11 + 2c44 + c12; ρv2
γ,Th

=

c11 − c12; ρv2
γ,T3

= c44, where the velocities vi are the
slopes of appropriate acoustic branches. Here, α, β and
γ indexes describe three main directions in the recipro-
cal space 〈0, 0, 1〉, 〈1, 1, 1〉 and 〈0, 1, 1〉, respectively. The
density of TiC ρ = 4849.6 kg/m3 was found using the cal-
culated lattice constant. The solution of this set of equa-
tions, by means of the least-squares fit, results in c11 = 5.7,
c12 = 2.5 and c44 = 1.51 Mbar. Comparing these values
with experimental data (Tab. 2) one notices considerable
discrepancies, especially for c12. A closer look to the dis-
persion curves, Figure 2, assures us that the transverse
acoustic mode in 〈1, 1, 0〉 direction and the longitudinal in
〈1, 1, 1〉 direction do not follow exactly the experimental
points. We have checked that such discrepancy of slope is
sufficient to produce the observed deviations of the calcu-
lated elastic constants, especially of c12. The discrepancy
in slopes is so small that it could be assigned to the missing
force constants describing mainly the long range Coulomb
interaction. Indeed, the direct method did not handle well
interactions exceeding the size of the supercell, except for
the special points Γ , X, L, W mentioned earlier.

To rule out that the discrepancy for c12 does not follow
from ab initio calculations, we have derived the bulk mod-
ulus and the elastic constants by two conventional meth-
ods [8]. The bulk modulus was calculated in the 1× 1× 1
supercell from the total energy as a function of the lattice
constant. This data has been fitted to a third order poly-
nomial. Hence, the derivative ∂P

∂V
, and the bulk modulus

B were calculated from the relation: B = −V ∂P
∂V

, where
V is the volume of TiC crystallographic unit cell. The B

Table 2. Experimental and calculated bulk modulus B and
elastic constants cij of the TiC crystal, in units of 1011 Nm−2 =
1 MBar. Values in parenthesis are calculated from B = 1

3
(c11 +

2c12).

Result B c11 c12 c44

Exp. TiC0.91 [3] (2.422) 5.145 1.060 1.788
Exp. TiC [27] 2.4 5.00 1.13 1.75
Exp. TiC0.95 [2] (2.5) 5.4 1.1 1.8
Exp. TiC0.89 [2] (2.5) 5.2 1.1 1.8
Calculations [8] 2.2 4.7 0.97 1.67
Ours, acoustic modes (3.57) 5.7 2.5 1.51
Ours, deform. energy 2.42 5.39 0.94 1.92
Ours, stress–strain (2.46) 5.21 1.09 1.93

values are given in Table 2 and they agree quite well with
experimental data.

A calculation of c11, c12, c44 elastic constants involved
a similar procedure, in which the crystal was deformed by
lengthening and sheer deformations. Deformations from
0.5% to 3% in length and from 1 to 5 degrees in angle have
been used. The results of small and large deformations
are consistent. The deformed lattices have space groups
Fm3̄m, I4/mmm and I/mmm, for bulk expansion, elonga-
tion along z, and sheer modes. In all these deformed lat-
tices all atoms remain in the high-symmetry sites which
guarantees an extremum of potential energy at those po-
sitions. Thus, in the case of cubic TiC, one is entitled not
to carry on the relaxation of internal degrees of freedom
during supercell deformations. The calculated elastic con-
stants are compared to experimental data in Table 2. They
agree with calculated values given in reference [8] and are
in good agreement with experiment.

We have also checked the above results using stresses
calculated by CASTEP. The elastic constants were found
as first derivatives of the stress–strain relationship. For
that, we have used the same runs of electronic calculations
as for the elastic constant derivation given above using de-
formation dependence of energy. The results are included
in Table 2 and they show slightly better agreement with
the experimental data.

In summary, we have shown that the ab initio calcula-
tions of HF forces, together with the direct method lead
to satisfactory description of phonons in the TiC crys-
tal. As usual the frequency of the calculated dispersion
curves are slightly too high. The acoustic modes are not
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sufficiently accurate, thus the elastic constants calculated
from them differ from those found through the supercell
deformations. The acoustic part of the density of states
fits well to neutron experimental data.
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7. J. Häglund, A.F. Guillerment, G. Grimvall, M. Körling,

Phys. Rev. B 48, 11685 (1993).
8. R. Ahuja, O. Eriksson, J.M. Wills, B. Johansson, Phys.

Rev. B 53, 3073 (1996).
9. W. Frank, C. Elsässer, M. Fähnle, Phys. Rev. Lett. 74,
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